5,196 research outputs found

    Angular and Polarization Response of Multimode Sensors with Resistive-Grid Absorbers

    Full text link
    High sensitivity receiver systems with near ideal polarization sensitivity are highly desirable for development of millimeter and sub-millimeter radio astronomy. Multimoded bolometers provide a unique solution to achieve such sensitivity, for which hundreds of single-mode sensors would otherwise be required. The primary concern in employing such multimoded sensors for polarimetery is the control of the polarization systematics. In this paper, we examine the angular- and polarization- dependent absorption pattern of a thin resistive grid or membrane, which models an absorber used for a multimoded bolometer. The result shows that a freestanding thin resistive absorber with a surface resistivity of \eta/2, where \eta\ is the impedance of free space, attains a beam pattern with equal E- and H-plane responses, leading to zero cross polarization. For a resistive-grid absorber, the condition is met when a pair of grids is positioned orthogonal to each other and both have a resistivity of \eta/2. When a reflective backshort termination is employed to improve absorption efficiency, the cross-polar level can be suppressed below -30 dB if acceptance angle of the sensor is limited to <60degrees. The small cross-polar systematics have even-parity patterns and do not contaminate the measurements of odd-parity polarization patterns, for which many of recent instruments for cosmic microwave background are designed. Underlying symmetry that suppresses these cross-polar systematics is discussed in detail. The estimates and formalism provided in this paper offer key tools in the design consideration of the instruments using the multimoded polarimeters.Comment: 22 pages, 15 figure

    Two stage superconducting quantum interference device amplifier in a high-Q gravitational wave transducer

    Full text link
    We report on the total noise from an inductive motion transducer for a gravitational-wave antenna. The transducer uses a two-stage SQUID amplifier and has a noise temperature of 1.1 mK, of which 0.70 mK is due to back-action noise from the SQUID chip. The total noise includes thermal noise from the transducer mass, which has a measured Q of 2.60 X 10^6. The noise temperature exceeds the expected value of 3.5 \mu K by a factor of 200, primarily due to voltage noise at the input of the SQUID. Noise from flux trapped on the chip is found to be the most likely cause.Comment: Accepted by Applied Physics Letters tentatively scheduled for March 13, 200

    Galactic Archaeology with TESS: Prospects for Testing the Star Formation History in the Solar Neighbourhood

    Get PDF
    A period of quenching between the formation of the thick and thin disks of the Milky Way has been recently proposed to explain the observed age-[{\alpha}/Fe] distribution of stars in the solar neighbourhood. However, robust constraints on stellar ages are currently available for only a limited number of stars. The all-sky survey TESS (Transiting Exoplanet Survey Satellite) will observe the brightest stars in the sky and thus can be used to investigate the age distributions of stars in these components of the Galaxy via asteroseismology, where previously this has been difficult using other techniques. The aim of this preliminary study was to determine whether TESS will be able to provide evidence for quenching periods during the star formation history of the Milky Way. Using a population synthesis code, we produced populations based on various stellar formation history models and limited the analysis to red-giant-branch stars. We investigated the mass-Galactic-disk-height distributions, where stellar mass was used as an age proxy, to test for whether periods of quenching can be observed by TESS. We found that even with the addition of 15% noise to the inferred masses, it will be possible for TESS to find evidence for/against quenching periods suggested in the literature (e.g. between 7 and 9 Gyr ago), therefore providing stringent constraints on the formation and evolution of the Milky Way.Comment: 4 pages, 3 figures, proceedings of "Seismology of the Sun and the Distant Stars 2016", Mario J. P. F. G. Monteiro, Margarida S. Cunha, Joao Miguel T. Ferreira editor

    Results of Osteochondral Autologous Transplantation in the Knee

    Get PDF
    Repair of full thickness defects of articular cartilage in the knee is difficult but important to prevent progression to osteoarthritis. The purpose of this retrospective study was to evaluate the clinical results of Osteochondral Autograft Transplant System (OATS) treatment for articular defects of the knee

    Magnetic Calorimeter Option for the Lynx X-Ray Microcalorimeter

    Get PDF
    One option for the detector technology to implement the Lynx x-ray microcalorimeter (LXM) focal plane arrays is the metallic magnetic calorimeter (MMC). Two-dimensional imaging arrays of MMCs measure the energy of x-ray photons by using a paramagnetic sensor to detect the temperature rise in a microfabricated x-ray absorber. While small arrays of MMCs have previously been demonstrated that have energy resolution better than the 3 eV requirement for LXM, we describe LXM prototype MMC arrays that have 55,800 x-ray pixels, thermally linked to 5688 sensors in hydra configurations, and that have sensor inductance increased to avoid signal loss from the stray inductance in the large-scale arrays when the detectors are read out with microwave superconducting quantum interference device multiplexers, and that use multilevel planarized superconducting wiring to provide low-inductance, low-crosstalk connections to each pixel. We describe the features of recently tested MMC prototype devices and simulations of expected performance in designs opti- mized for the three subarray types in LXM

    Superconducting Films for Absorber-Coupled MKID Detectors for Sub-Millimeter and Far-Infrared Astronomy

    Get PDF
    We describe measurements of the properties, at dc, gigahertz, and terahertz frequencies, of thin (10 nm) aluminum films with 10 ohm/{rm square}$ normal state sheet resistance. Such films can be applied to construct microwave kinetic inductance detector arrays for submillimeter and far-infrared astronomical applications in which incident power excites quasiparticles directly in a superconducting resonator that is configured to present a matched-impedance to the high frequency radiation being detected. For films 10 nm thick, we report normal state sheet resistance, resistance-temperature curves for the superconducting transition, quality factor and kinetic inductance fraction for microwave resonators made from patterned films, and terahertz measurements of sheet impedance measured with a Fourier Transform Spectrometer. We compare properties with similar resonators made from niobium 600 nm thick

    Multimode bolometer development for the PIXIE instrument

    Full text link
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30\sim30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.Comment: 10 pages, 7 figure

    Precision control of thermal transport in cryogenic single-crystal silicon devices

    Get PDF
    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path \ell is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than \ell, even when the surface is fairly smooth, 5-10 nm rms, and the peak thermal wavelength is 0.6 μ\mum. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order \ell, the conductance is dominated by ballistic transport and is effectively set by the beam area. We have demonstrated a uniformity of ±\pm8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors

    Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer

    Get PDF
    Burkholderia thailandensis E264 is a rhamnolipid (RL)-producing gram-negative bacterium first isolated from the soils and stagnant waters of central and north-eastern Thailand. Growth of B. thailandensis E264 under two different incubation temperatures (25 and 30 °C) resulted in a significantly higher dry cell biomass production at 30 °C (7.71 g/l) than at 25 °C (4.75 g/l) after 264 h; however, incubation at the lower temperature resulted in consistently higher concentration of RL production throughout the growth period. After 264 h, the concentration of crude RL extract for the 25 °C culture was 2.79 g/l compared to 1.99 g/l for the 30 °C culture. Overall RL production concentration after 264 h was 0.258 g/g dry cell biomass (DCB) for the 30 °C culture compared to 0.587 g/g DCB for the 25 °C culture. Real-time PCR (qPCR) was also used to analyse expression of the RL biosynthesis genes throughout the incubation period at 25 °C showing that the expression of the rhlA, rhlB and rhlC genes is continuous. During the log and early stationary phases of growth, expression levels remain low and are increased upon entry to the late stationary phase. B. thailandensis E264 produces mostly di-RLs and the Di-RL C14-C14 in most abundance (41.88 %). Fermentations were also carried out in small-scale bioreactors (4 l working volume) under controlled conditions, and results showed that RL production was maintained. Our findings show that B. thailandensis E264 has excellent potential for industrial scale RL production
    corecore